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Thoughts about Measuring Entrainment




Entrainment




Entrainment of moisture into middle atmosphere was
highlighted as one of the two processes that exhibits the most
sensitivity to GCM simulations (Sanderson et al. 2008)

Moisture in mid-trop also hypothesized to be extremely
important for development of deep convection

Requires high vertical and temporal resolution to study this

Raman lidar (SGP, Darwin) makes the needed observations
— Clear skies and beneath clouds
— Need to account for instrument noise

Passive ground-based WV profilers (e.g., AERI, MWRP) “run out
of information” at top of BL, thus vertical resolution suffers

— Still able to get useful information out of these instruments?
— Does combining with satellite sounders (e.g., IASI) help?



Example Time-Height Cross-Section
10-s, 75-m resolution
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Example Time-Height Cross-Section
10-s, 75-m resolution (zoomed view)
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Instrument Noise Characteristics
22 Aug 2007 from 2200-2400 UTC
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Integral Scale Profile
22 Aug 2007 from 2200-2400 UTC

N,
.

|
ho

Normalized Boundary Layer Height (z / z;)

TT
r
I
[
I
I
I
[
I
I
[
I
I
I
[
I
I
I
[
I
I
I
[
I
I
I
[
I
I
I
1 | 1 1 1
o

Uncorrected Integral Scale
Moise-corrected Integral Scale
Temporal Resolution

Altitude [m AGL]
o
o
o=

1 I 1
o
o

1 I 1
o
o)

L I 1 1
o
i

0 50 100 150 200 250 300
H.O Mixing Ratio Integral Scale [s]

‘{
Lx|




Atmospheric H,O Variance Profile
22 Aug 2007 from 2200-2400 UTC
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Atmospheric H,0 Skewness Profile
22 Aug 2007 from 2200-2400 UTC
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Evolution of the BL Turbulence

3 September 2007

3000

2500

2000

Altitude [km AGL]

il gl

1500 1600 1700 1800 1900 2000 2100 2200 2300
Hour [UTC]

500 F
— 400 F
E 5
= 300 E

=3

= 200F
% -
T 100F
ﬂ_
1500

3 Sensible Heat Flux
3 Latent Heat Flux

1900 2000 2100 2200
Hour [UTC]

1600 1700 1800

?c\~




Evolution of the BL Turbulence

3 September 2007
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Altitude [m AGL]

Variance and Skewness Profiles

3 September 2007: 1600-1800 and 2000-2200 UTC
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Variance and Skewness Profiles
3 September 2007: 1600-1800 and 2000-2200 UTC
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How Does Variance and Skewness Vary?
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How Does Variance and Skewness Vary?
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How Does Variance and Skewness Vary?
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* Profiles of vertical velocity and w’

« Combined with RL water vapor to get water vapor fluxes
— Need to consider horizontal separation (~¥300 m) of RL and DWL at SGP

* Only able to provide wind profiles in regions with aerosol (BL)
 How good will be the S/N at top of the BL?




Spatial Separation at TWP Darwin

(not really an issue here)
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Entrainment of Dry Air into Clouds




Sub-Adiabatic Fraction Useful?
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Easily compute the adiabatic LWP of a cloud

Ratio of measured LWP to LWP_, could be a proxy for
entrainment rate

How often do (near) adiabatic conditions hold?

How accurate is the assumed adiabatic LWP, given cloud
boundary uncertainties (esp determining cloud top)?

How do uncertainties in observed LWP impact this ratio?

Clearly, this ratio becomes more accurate as the cloud thickness
and LWP increase
— LWP_, less sensitive to cld boundary uncertainty as cld becomes thicker
— Most clouds are “thin” with LWP < 100 g/m?

— Geometrically thicker (deeper) clouds probably are less adiabatic than
their thinner cousins



Entrainment of Dry Air into Clouds
Key Geophysical Parameters Needed




LWC Profiles from Passive Sensors?
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Combining Single Freq Cloud Radar and MWR
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Fig. 2. Example for the retrieved errors of the LWC profiles in Fig. 1. ATB errar
of 0.5K and an a priori uncertainty of log{LWC/gm~* 1=0.175
[corresponding to a relative a prior uncertainty of 34%) is assumed. In this
example, the retrieval includes the MWER brightness temperatures of the K-
band only.




Synergy of Sensors in LWC Retrieval
Dependence of DFS on LWC Error
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Increasing the Observational Uncertainty
Impact on DFS in LWC Retrieval
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Adding Vertical Correlation to Prior

Connection btwn Prior Uncertainty and DFS and Posterior
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What About Dual-Freq Approaches?

(E.g., Differential Absorption at W and Ka)




Using Ka- and W-band, each 1 dB difference is ~120 g/m?
Assumes in Rayleigh scattering regime
Absolute calibration accuracy not required

— Relate relative calibration from each radar at cloud base
Precise (low-noise) observations of reflectivity required

Inversion problem is well-posed, but direct derivation
challenging due to noise in data

Need to formulate as a retrieval problem
— Brings in additional information to help constrain solution
— Some success with topographic techniques
— Need to quantify the info content of obs vs. prior from retrieval
— What s the accuracy? The error covariance between levels?

Dong Huang’s method agrees with MWR LWP w/i 30-80 g/m?



Z vs time, WACR, 20070426
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Z vs time, WACR, 20060507
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BL / free tropospheric exchange
— Have a method to determine WV turbulent profiles in convective BLs

— |If can overcome the horizontal spacing issue, likely can determine WV
fluxes at SGP (almost certainly can at Darwin)

* Still need to characterize how well the DWLs work for w’ statistics
— RL analysis is limited to SGP and TWP-Darwin sites
— Research needs to be done to see if similar results can be derived from
AERI retrievals at other sites
Cloud entrainment
— Methods appear more promising for thicker clouds with larger LWP
— Unfortunately, more than 50% of clds have LWP < 100 g/m?
— Probably should concentrate initially on warm, non-precipitating clds
* Mixed-phase will generate large uncertainties in radar analysis
* Precipitation hinders adiabatic, and perhaps Rayleigh, assumptions
— Would there be benefit to looking at profiles of Reff instead of LWC?



An Approach?
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The CIRPAS Twin Otter

Twin Otter carried a diode laser hygrometer operating at
90 Hz during RACORO Field Campaign (Jan-Jun 2009)



Twin Otter Flight Path

15 June 2009
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Time-Height Cross-Section of H,O by RL
15 June 2009
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Mean and Variance H,O Profiles: Initial
15 June 2009
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Mean and Variance H,O Profiles: Initial

15 June 2009
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HSRL PBL Height [m AGL]

Boundary Layer Height Away from SGP CF
15 June 2009
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Analysis of Upper Twin Otter Flight Leg
15 June 2009

Twin Otter Leg at 1314 m on 15 June 2009

- N
©w o

3

o

5
=21
c

9

L

E

=T

—_ =t i -t - [
o N = O 0o

H,O Mixing Ratio [g/kg]

-k
o
=]
]

- Mean I%ISHL Boundary Laﬂer Height . : : 1
1500_'""""""Tf.-.riﬂﬂtter:ﬁltlmdte'fnrupptrm;;'""""""'1"""""' LI

r Raman lidar boundary layer height :

800 ¢ : : | ; ;
0 5 10 15 20 25
Distance from SGP CF [km]

PBL Height [m AGL]

.




Mean and Variance H,O Profiles: Refined
15 June 2009
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Mean and Variance H,O Profiles: Refined
15 June 2009
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Mean and Variance Normalized Profiles
15 June 2009
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